 5. Test management

5.1 Test organization
Terms
Tester, test leader, test manager.

5.1.1 Test organization and independence
The effectiveness of finding defects by testing and reviews can be improved by using independent testers. Options for independence are:

· No independent testers. Developers test their own code.

· Independent testers within the development teams.

· Independent test team or group within the organization, reporting to project management or executive management.

· Independent testers from the business organization or user community.

· Independent test specialists for specific test targets such as usability testers, security testers or certification testers (who certify a software product against standards and regulations).

· Independent testers outsourced or external to the organization.

For large, complex or safety critical projects, it is usually best to have multiple levels of testing, with some or all of the levels done by independent testers. Development staff may participate in testing, especially at the lower levels, but their lack of objectivity often limits their effectiveness. The independent testers may have the authority to require and define test processes and rules, but testers should take on such process-related roles only in the presence of a clear management mandate to do so.

The benefits of independence include:

· Independent testers see other and different defects, and are unbiased.

· An independent tester can verify assumptions people made during specification and implementation of the system.

Drawbacks include:

· Isolation from the development team (if treated as totally independent).

· Independent testers may be the bottleneck as the last checkpoint.

· Developers may lose a sense of responsibility for quality.

Testing tasks may be done by people in a specific testing role, or may be done by someone in
another role, such as a project manager, quality manager, developer, business and domain expert,
infrastructure or IT operations.

5.1.2 Tasks of the test leader and tester
In this syllabus two test positions are covered, test leader and tester. The activities and tasks
performed by people in these two roles depend on the project and product context, the people in the
roles, and the organization.

Sometimes the test leader is called a test manager or test coordinator. The role of the test leader
may be performed by a project manager, a development manager, a quality assurance manager or
the manager of a test group. In larger projects two positions may exist: test leader and test
manager. Typically the test leader plans, monitors and controls the testing activities and tasks as
defined in Section 1.4.

Typical test leader tasks may include:

· Coordinate the test strategy and plan with project managers and others.

· Write or review a test strategy for the project, and test policy for the organization.

· Contribute the testing perspective to other project activities, such as integration planning.

· Plan the tests – considering the context and understanding the test objectives and risks – including selecting test approaches, estimating the time, effort and cost of testing, acquiring resources, defining test levels, cycles, and planning incident management.

· Initiate the specification, preparation, implementation and execution of tests, monitor the test results and check the exit criteria.

· Adapt planning based on test results and progress (sometimes documented in status reports) and take any action necessary to compensate for problems.

· Set up adequate configuration management of testware for traceability.

· Introduce suitable metrics for measuring test progress and evaluating the quality of the testing and the product.

· Decide what should be automated, to what degree, and how.

· Select tools to support testing and organize any training in tool use for testers.

· Decide about the implementation of the test environment.

· Write test summary reports based on the information gathered during testing.

Typical tester tasks may include:

· Review and contribute to test plans.

· Analyze, review and assess user requirements, specifications and models for testability.

· Create test specifications.

· Set up the test environment (often coordinating with system administration and network management).

· Prepare and acquire test data.

· Implement tests on all test levels, execute and log the tests, evaluate the results and document the deviations from expected results.

· Use test administration or management tools and test monitoring tools as required.

· Automate tests (may be supported by a developer or a test automation expert).

· Measure performance of components and systems (if applicable).

· Review tests developed by others.

People who work on test analysis, test design, specific test types or test automation may be specialists in these roles. Depending on the test level and the risks related to the product and the project, different people may take over the role of tester, keeping some degree of independence. Typically testers at the component and integration level would be developers, testers at the acceptance test level would be business experts and users, and testers for operational acceptance testing would be operators.

[image: image1.jpg]
5.2 Test planning and estimation
Terms
Test approach

5.2.1 Test planning
This section covers the purpose of test planning within development and implementation projects,
and for maintenance activities. Planning may be documented in a project or master test plan, and in
separate test plans for test levels, such as system testing and acceptance testing. Outlines of test
planning documents are covered by the ‘Standard for Software Test Documentation’ (IEEE 829).

Planning is influenced by the test policy of the organization, the scope of testing, objectives, risks,
constraints, criticality, testability and the availability of resources. The more the project and test
planning progresses, the more information is available, and the more detail that can be included in
the plan.

Test planning is a continuous activity and is performed in all life cycle processes and activities.
Feedback from test activities is used to recognize changing risks so that planning can be adjusted.

5.2.2 Test planning activities
Test planning activities may include:

· Determining the scope and risks, and identifying the objectives of testing.

· Defining the overall approach of testing (the test strategy), including the definition of the test levels and entry and exit criteria.

· Integrating and coordinating the testing activities into the software life cycle activities: acquisition, supply, development, operation and maintenance.

· Making decisions about what to test, what roles will perform the test activities, how the test activities should be done, and how the test results will be evaluated.

· Scheduling test analysis and design activities.

· Scheduling test implementation, execution and evaluation.

· Assigning resources for the different activities defined.

· Defining the amount, level of detail, structure and templates for the test documentation.

· Selecting metrics for monitoring and controlling test preparation and execution, defect resolution and risk issues.

· Setting the level of detail for test procedures in order to provide enough information to support reproducible test preparation and execution.

5.2.3 Exit criteria
The purpose of exit criteria is to define when to stop testing, such as at the end of a test level or when a set of tests has a specific goal.

Typically exit criteria may consist of:

· Thoroughness measures, such as coverage of code, functionality or risk.

· Estimates of defect density or reliability measures.

· Cost.

· Residual risks, such as defects not fixed or lack of test coverage in certain areas.

· Schedules such as those based on time to market.

5.2.4 Test estimation
Two approaches for the estimation of test effort are covered in this syllabus:

· The metrics-based approach: estimating the testing effort based on metrics of former or similar
projects or based on typical values.

· The expert-based approach: estimating the tasks by the owner of these tasks or by experts.

Once the test effort is estimated, resources can be identified and a schedule can be drawn up.

The testing effort may depend on a number of factors, including:

· Characteristics of the product: the quality of the specification and other information used for test models (i.e. the test basis), the size of the product, the complexity of the problem domain, the requirements for reliability and security, and the requirements for documentation.

· Characteristics of the development process: the stability of the organization, tools used, test process, skills of the people involved, and time pressure.

· The outcome of testing: the number of defects and the amount of rework required.

5.2.5 Test approaches (test strategies)
One way to classify test approaches or strategies is based on the point in time at which the bulk of
the test design work is begun:

· Preventative approaches, where tests are designed as early as possible.

· Reactive approaches, where test design comes after the software or system has been produced.

Typical approaches or strategies include:

· Analytical approaches, such as risk-based testing where testing is directed to areas of greatest risk.

· Model-based approaches, such as stochastic testing using statistical information about failure rates (such as reliability growth models) or usage (such as operational profiles).

· Methodical approaches, such as failure-based (including error guessing and fault-attacks), experienced-based, check-list based, and quality characteristic based.

· Process- or standard-compliant approaches, such as those specified by industry-specific standards or the various agile methodologies.

· Dynamic and heuristic approaches, such as exploratory testing where testing is more reactive to events than pre-planned, and where execution and evaluation are concurrent tasks.

· Consultative approaches, such as those where test coverage is driven primarily by the advice and guidance of technology and/or business domain experts outside the test team.

· Regression-averse approaches, such as those that include reuse of existing test material, extensive automation of functional regression tests, and standard test suites.

Different approaches may be combined, for example, a risk-based dynamic approach.

The selection of a test approach should consider the context, including:

· Risk of failure of the project, hazards to the product and risks of product failure to humans, the environment and the company.

· Skills and experience of the people in the proposed techniques, tools and methods.

· The objective of the testing Endeavour and the mission of the testing team.

· Regulatory aspects, such as external and internal regulations for the development process.

· The nature of the product and the business.

[image: image2.jpg]
5.3 Test progress monitoring and control
Terms
Defect density, failure rate, test control, test monitoring, test report.

5.3.1 Test progress monitoring
The purpose of test monitoring is to give feedback and visibility about test activities. Information to
be monitored may be collected manually or automatically and may be used to measure exit criteria,
such as coverage. Metrics may also be used to assess progress against the planned schedule and
budget. Common test metrics include:

· Percentage of work done in test case preparation (or percentage of planned test cases prepared).

· Percentage of work done in test environment preparation.

· Test case execution (e.g. number of test cases run/not run, and test cases passed/failed).

· Defect information (e.g. defect density, defects found and fixed, failure rate, and retest results).

· Test coverage of requirements, risks or code.

· Subjective confidence of testers in the product.

· Dates of test milestones.

· Testing costs, including the cost compared to the benefit of finding the next defect or to run the next test.

5.3.2 Test Reporting
Test reporting is concerned with summarizing information about the testing endeavor, including:

· What happened during a period of testing, such as dates when exit criteria were met.

· Analyzed information and metrics to support recommendations and decisions about future actions, such as an assessment of defects remaining, the economic benefit of continued testing, outstanding risks, and the level of confidence in tested software.

The outline of a test summary report is given in ‘Standard for Software Test Documentation’ (IEEE 829).

Metrics should be collected during and at the end of a test level in order to assess:

· The adequacy of the test objectives for that test level.

· The adequacy of the test approaches taken.

· The effectiveness of the testing with respect to its objectives.

5.3.3 Test control
Test control describes any guiding or corrective actions taken as a result of information and metrics gathered and reported. Actions may cover any test activity and may affect any other software life cycle activity or task.

Examples of test control actions are:

· Making decisions based on information from test monitoring.

· Re-prioritize tests when an identified risk occurs (e.g. software delivered late).

· Change the test schedule due to availability of a test environment.

· Set an entry criterion requiring fixes to have been retested (confirmation tested) by a developer before accepting them into a build.

[image: image3.jpg]
5.4 Configuration management
Terms
Configuration management, version control.

Background
The purpose of configuration management is to establish and maintain the integrity of the products (components, data and documentation) of the software or system through the project and product life cycle.

For testing, configuration management may involve ensuring that:

· All items of testware are identified, version controlled, tracked for changes, related to each other and related to development items (test objects) so that traceability can be maintained throughout the test process.

· All identified documents and software items are referenced unambiguously in test documentation.

For the tester, configuration management helps to uniquely identify (and to reproduce) the tested item, test documents, the tests and the test harness.

During test planning, the configuration management procedures and infrastructure (tools) should be chosen, documented and implemented.

[image: image4.jpg]
5.5 Risk and testing
Terms
Product risk, project risk, risk, risk-based testing.

Background
Risk can be defined as the chance of an event, hazard, threat or situation occurring and its undesirable consequences, a potential problem. The level of risk will be determined by the likelihood of an adverse event happening and the impact (the harm resulting from that event).

5.5.1 Project risks
Project risks are the risks that surround the project’s capability to deliver its objectives, such as:

· Organizational factors:

· skill and staff shortages;

· personal and training issues;

· political issues, such as

· problems with testers communicating their needs and test results;

· failure to follow up on information found in testing and reviews (e.g. not improving development and testing practices).

· improper attitude toward or expectations of testing (e.g. not appreciating the value of finding defects during testing).

· Technical issues:

· problems in defining the right requirements;

· the extent that requirements can be met given existing constraints;

· the quality of the design, code and tests.

· Supplier issues:

· failure of a third party;

· contractual issues.

When analyzing, managing and mitigating these risks, the test manager is following well established project management principles. The ‘Standard for Software Test Documentation’ (IEEE 829) outline for test plans requires risks and contingencies to be stated.

5.5.2 Product risks
Potential failure areas (adverse future events or hazards) in the software or system are known as product risks, as they are a risk to the quality of the product, such as:

· Failure-prone software delivered.

· The potential that the software/hardware could cause harm to an individual or company.

· Poor software characteristics (e.g. functionality, reliability, usability and performance).

· Software that does not perform its intended functions.

Risks are used to decide where to start testing and where to test more; testing is used to reduce the risk of an adverse effect occurring, or to reduce the impact of an adverse effect.

Product risks are a special type of risk to the success of a project. Testing as a risk-control activity provides feedback about the residual risk by measuring the effectiveness of critical defect removal and of contingency plans.

A risk-based approach to testing provides proactive opportunities to reduce the levels of product risk, starting in the initial stages of a project. It involves the identification of product risks and their use in guiding test planning and control, specification, preparation and execution of tests. In a riskbased approach the risks identified may be used to:

· Determine the test techniques to be employed.

· Determine the extent of testing to be carried out.

· Prioritize testing in an attempt to find the critical defects as early as possible.

· Determine whether any non-testing activities could be employed to reduce risk (e.g. providing training to inexperienced designers).

Risk-based testing draws on the collective knowledge and insight of the project stakeholders to determine the risks and the levels of testing required to address those risks.

To ensure that the chance of a product failure is minimized, risk management activities provide a disciplined approach to:

· Assess (and reassess on a regular basis) what can go wrong (risks).

· Determine what risks are important to deal with.

· Implement actions to deal with those risks.

In addition, testing may support the identification of new risks, may help to determine what risks should be reduced, and may lower uncertainty about risks.

[image: image5.jpg]
5.6 Incident management
Terms
Incident logging, incident management.

Background
Since one of the objectives of testing is to find defects, the discrepancies between actual and expected outcomes need to be logged as incidents. Incidents should be tracked from discovery and classification to correction and confirmation of the solution. In order to manage all incidents to completion, an organization should establish a process and rules for classification.

Incidents may be raised during development, review, testing or use of a software product. They may be raised for issues in code or the working system, or in any type of documentation including requirements, development documents, test documents, and user information such as "Help" or installation guides.

Incident reports have the following objectives:

· Provide developers and other parties with feedback about the problem to enable identification, isolation and correction as necessary.

· Provide test leaders a means of tracking the quality of the system under test and the progress of the testing.

· Provide ideas for test process improvement.

Details of the incident report may include:

· Date of issue, issuing organization, and author.

· Expected and actual results.

· Identification of the test item (configuration item) and environment.

· Software or system life cycle process in which the incident was observed.

· Description of the incident to enable reproduction and resolution, including logs, database dumps or screenshots.

· Scope or degree of impact on stakeholder(s) interests.

· Severity of the impact on the system.

· Urgency/priority to fix.

· Status of the incident (e.g. open, deferred, duplicate, waiting to be fixed, fixed awaiting retest, closed).

· Conclusions, recommendations and approvals.

· Global issues, such as other areas that may be affected by a change resulting from the incident.

· Change history, such as the sequence of actions taken by project team members with respect to the incident to isolate, repair, and confirm it as fixed.

· References, including the identity of the test case specification that revealed the problem.

The structure of an incident report is also covered in the ‘Standard for Software Test Documentation’ (IEEE 829).

